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VM-TION CY THTN' BODIES AT M1txj-I SV SONIC VELOCITIES

& LFollowinliZ I t r htin of an eivticlth by
0. W. J3nZ~io~ ith . 16. Bunimotioh and

M' P k-.yýv ill the News .. 6c.4F1- t -I-ca6t-

exiy of Mc~Zail, Divisilon oýf TOcIII-icei!
Zc~nce, ~sco~ N..1, 1960, peces 33-4"0:

*Izvestiya akademii Nauk SSR

Recenatly, -elong "with the theoretif~al invastiat8tiorn,, of the
ambient gas flow pastf bodies. at Mi~h velocitikeE., hieb-rpower apr
traetation. fac~ilitiee have been built Phicb tqake It pos.-ible to
study the problem of geflow~ at 8speeeds- n.--,~ the veloci1ty of
scund and considerably exceerain8 it.

Teprcgress of t~he experiment h- & Eattrdctedý tht: Fittentiori of
the rea.verchers to tiva oroblen'of tte e~alsaetof s-itilarity OZ'i-

t~eri- 'inl thne arlubient g"'s flow tit hieji vulocitie-s pi-,st bod.iets which do
ne~t ose the pWropertY Of ee0m--tri-C~l Simai'britY.

...n~bie~nt Ens f3ow paet thin bodie,, ise investi&gteý in, Keria~
work L 3(vlctie6 u proachinE the velocity of sound) and Teiers

L 23 (high supersonic velocities), the flow being aEssumed to be
p-luan or axially s3ymmetrical, potential, ernd is-entropic. The consid-
erationR of these qauthor,- are zot rjgorous becaý,use of the aesuirptions
concerningq potentiality arid 18enttopy ofL
the flow which; cleeirly fao not corres~pond
to the physical prop~erties of the flo-w. IV

T11 the present farticle, Tk~ien's
result:- bre generalized for the casfe of

a threedimansi nu otion in the prt~s- /
ence of shock waveg ana vortexes, and it
is shown that the problem on the steady

1) The work -.,s published for smoll cireulatioi, iin the syiaposiuiu
"0Theoretical Hydrormeoltniosn , No. 4., 1949, In a footnote to tha-!-
work, it is pointed out that an a:tuthori-bed report of the papersL
was presented in Fe:rch 1948 at the seminar or, hydromechartics at
Moscow State University,. The ýv~ork is being reprinted ithout chhandes.



".imbient gas flow pest a thin body at e high supersonic velocity can
be reduced approx!iaste&1y to the problem on unsieady gas motion in
spece with the number of dimensions being less by unity. Com-pnrison
of the resultis obtained and the avai3able exact solutions determine
thp lii.its of the applicability of the aprlroxbrition method.

1. Let us consider the motion of a thin body in the direction
of the negative axis x at a constant velocity V which corsiderably
exceeds the speed of sound (Figure 1),

Equ•tions of the absolute motion of gas in projections on the
* fixed axes of coordinates x', y", z' have the following form.

.uler's equations

" 3 w c• w-vloitycopo

e, + i- ±u - y I

o Cont t xesa V Oz, i

Conebtinut eguation

D d (!.5)Pý)+

+ PF• + Pl ' '

hlere, p is pressure, P density, u , v, w -velocity cornpo-
nents of gas alone. axes xt , y", z*.

Let us go over to the system of coordinates x, y e z connected
rigidly wi-th the Pmovirnc boely, after having. made use of the tra sform-

Since the motion of gas relative to theý body is steady, then
for any function F(x, y, z) the following relation is valid

Let b be the chord of the body arid &-some linear dity.ension
characteri.,ing the cross section (diameter of the cross section in the

case of an axially symaetrical body; the median in the case of a plane



contour)b Introducing dimensionless coordinates •, •, • according
to formulae

and making use of the relation (1.5), we will obtain from the ecjuations
(1.1) - (1.3)

VTI +.TI Up + +w = --+ -
Itv It+ vaw Ov aw

*at, b • 'El, (17)

VT= + +-• t •- + •

Sat b at Psu o P o°

If the form of the body is defined by the equation

g(=Ib, y/ 8, z/8)=g(E,-,) o 0/s

then the ambient flow condition on the surface of the body may be writ-
ten ii, the form

<V + U) + Va+ Wag(,+

Fluid is at rest at the infinity ahead of the body

u = 0, v = 0, W,.0 "(.10)

pressure equals p and den•ity equals po.

When considering the motion of thin bodies at high velocities,
we shall be neglecting tenns of the form (s/b)u / .

(which contain the small multiplier (&/b) when comparison,
with the rest of the terts which are part of the equations (1.1)
(1.2), (1.3)- At the same tine, terms containing multiplier V8/b, are
retained since at high velocities V of the body, the magnitude of



"V i /p) is finite,
Relating all velocities to the speed of sound in a fluid at

reat, a., for which

a02 po- (lilI)

(• is the ratio of thermal eapacities), denoting the dimensionless
magnitudes of velocity, density, and pressure by

S V = 9 p .- U- U'= =- (1.O2)

end introducirg the dimensionless parameter

we will obtain from ejuations (1.7)

gA+L,..By *$p

t¢•+ V. + W-ý+ýU -

8ire 2

The. ambient flow condition (1.9) will be rewritten in the. fol-

lowing form a~fter neglecting the magnitude of.' upon comparisonA with V

Conditions at the infinity ahead of the body will take on the

form

zC=O, ,,=0. w'=O (148•)

2. During the motion of a body at high supersonic velocity in

Sges at rest, a shock wave originates which deflects little from the



surface of the body. If the normal component of the velocity of the '

shock wave propagation is denoted by c and the angle between the P
direction of the tangent (Figu.re 2). to the shock wave and axis x is
designated by z, then in view of. the smallness of angle • we will
obtain

If vt and v are the components of the velocity of gas
"along the tangent and the normal. to the direction of the shock wave,
then vt---ucosP-V-qw M, or because is small,

vt -u

and v' may be regarded as the component of the velocity of gas in the
direction perpendicular to axis x.

Conditions o the shock wave may be represente6 in the form

V •O, P) -P1 [O +•, t %0LX/S]-2.2

where pl and p 1 are density and raressure beyond the shock wave.
Going to coordinates •, q. •, we will obtain from condition

(2.1)

C (2.3)

where is magnitude deternmdned in the process of the 6olutiom of the
-prolblew (the tangent of the angle between the direction of the tangent

to the shock wave and aexs t in the plane Z. -j).
Introduicng parameter K into equations (2.2) and. denoting

a -• • P1 ,o •"- ', n • (2#4)* ~ ~ 4 Pg*_ 'O *(

we will obtain conditions on the 8hook wave in dimensionless fortn

++=Ka I P]OKA UKI



tt is clear from the equations and boundpry conditions
obtained that the only perameters of the problem 9re: the mngnitides
of K anC x . TLerefore, it is obvious that for pressure, e•-tspty,
n-•n3 thd co,,Ionents of the veloeýity of &.• at ant roint of the flo,',
,ue m-ay write

I=f(K. xuj~, PO P (K
SPC (2.6)

q. Tt i (-"asy ý show tlht iL suehl an•,proirete state-ment
the proý1!em on the steady motion of a thin body st a high 8upersonlt
velocity coincides with the problem on unsteady motion in space the
number of dimensions of which is smeller by onei)

By the substitution of the variables in the equaations (1.14)

we will obtain equations of the non-steady-state, two-dimensional
problem in fixed plane . perpendicular to the velocity of the body
motion (Figure 3):

jr /shock wave a+ az + W Y

.. . aW w I op (3.2)

g-" Tp•,• ay, a(.-) _ 0~

a y az 8P P W ý P O

dat

Figure 3.
Condition (1.15) goes into the equation of the motion of the

boundary which may be regarded as an unueua1 piston. Indeed, since

ag ag b _a ag

1) The feasibility of ieducing the problem on the t•hree-dimensional
&Veady motion (in this approximate statement) to the tyro-dimensicnal
-roblem orL unsteady motion is pointed by Hayes Lf3 . _7

S6



we will obtain from (1.15)

+ +v +W =. (3.3)

Conditions at infinity (1.16) go into initial conditions:

V -0, W= ,, t t=O (3.4)

'The 'change in 6 under the condition that K remain constant
is simply a change in the scale in the non steady-state problem.

Thus, the problem on the motion of a thin body at high super-
sonic velocity i three-dimensional spate corresponds in the approxi-
mate statemirent to the plane non-steady-state problem of the expansion
of s eylindrlcal piston.-

The plane problem on the motion of a thin body at a high super-
sonic. velocity corresponds to one-dimensional problem on the unsteady
motion of a piston in the presence of thae shook wave.

. In order to determine the limits of the applicability of
the similarity criter ia obtained, let us compare the approximate solu-
tion with the available exact solutions.

As the first example, let tis consider
the problem on the motion of a wedge having
angle 2e in the direction of axis ,x at
supersonic velocity (Figure 4).

As is known, 8 straight-line shock .
wave forms in the flow, this shock wave

originating at the point of the wedge and
forming angle p with exis iý.

Figure i

It can be derived froom the conditions on the shock wave (2,2)
that

0X - i) -M sin'!~fr 21 g

p,' (4.1)
pt -•j [2xM 0

2si" [ -- (x -+ t(.

whence it is possible to find the relation pj!pO as the function of
the number Mo and the central angle of the cone. In the case
being considereds parameter K equals

¢26

K MOTz .2MOtg 0 (4.2)

'-7 -



7 T

Gra O~phs of the relation of p/-
N' cle to K(xl")x' have been constructed

(F-gxre 5) on the basis of the com-

-APPrOxilnat!Ot putation perforned for numbers M0-
n: 1.5. 2.5, 10 Anp. varipationt of- Exact Solution •" t "
"- xa " ___tti• angle H from 0 to 200.

I The approxi•,te solution of the
problerm on wedge motion at high

- _supersonic velocities alounte to the"
solution of one-di.nslonal prcobleim
on piston mnotion at a constant 2petd.

The ae.ed of piston moti(.n is
3 •-* " obviously e uel to the vertical Ve-

M0.-7 ioe• ty of the Vedge, i e,

, . . . - .v = IV tgE( (4.3)
V tg

___and consaeuently,

0 2 K -! t
K _..-2tge=~2 (44

Fi~nre 5

zs is kncwnn1 in piston m~otion the pt'essure and velocity on
t1e 4iton u th. e pre ciure n1 ve2.ocity beyond the shock wfve,

Elimina•t-ing the magn.tude . a Ic frok• the second and third

e%,'•tionns crf (2.2) and raking use of (4-4), we will obtain

Po 1

Tho ou~rve eorlespondi~g to (4-5) is rel-renented in Fi"ure 5
by the broken line.

It is evident fronm FIOre 5 that for lnýge nuivbers for Mo

and w;mell central angles of the wedZeý the ap roximetAe solution
coindee5s very well with the exact oollution.

For comparison there are plotted in Figure 6 broken-line
curves vrhich correspond to the approximate computation of pj/p0 by
Donov's formula L4 _7 if one confines oneself in it to the terms
of the second order relative to $. Donov's formula has the form

+ 2 + -- 0 Me (4.6)

PO 2 * f



where K-- 2MoO is taken approximately.

Approximation tI
method
Exact solution I / L

/. I I

I Y-1

Figure, 6. Figure 7.

AS the s-econd example, let us consider the motion of a right circu-

lar cone in the direction of its axis at a supersonic velocity.

- The exact solution of this problem was given by Bueemann

L5, _, and the detailed oomputation's were performed by Taylor and

JX.a Conll-6 1.

.1e

We showed above that this problem corresponds app•roximat-ly

to the problem on the expansion of a circula r cylindrical piston

at a steady velocity, And the solution of the problem on the expan-
Sion of a cylindrical piston was given L. 1, Sedov 7 ._7

In F-igure 7 are given the curves of the relation between the

ratio of the pressure p4 on the cone (cylindrical piston) to pres-

sure Po in gcts at rest., and the number f or K=(V / ao)2 Ig 0 2v / a
(because, as in the case of the wedKge, 6/b=2tg, anc the veloci;y

of piston motion is the vertical cone velocity equalling Vtg 0),

The broken line represents the result of numerical integration of

equations derived in Sedov's work. Continuous lines show the depend-

ence of pn Po ond e with different numbers for Veao, this rela-

tion having beem n te the basis of the exact solution by

Taylor and Mad Collc Dot-and-dash lines show the dependence of

sio o acyinrialpito wa gve L I $do L'~91



p•/po on K with different numbers for V oia this relation

having been obtained by Busemann's formula /8 J.
it is'evident fror Figure 7 that the difference in the values

produced by the exact end approximate solutions decreases with the
increase in the number for Me For M5:3, the result obtained from

the approximate solution may be considered satisfactory when K I< 1
(an error of less than 5%)sJ ie. for the central angles of the cone
S2 f C 18°. For Mo: 5,the result is satisfactory up to K=2, i.e.

for cones with central angles 2044 < 220. Generally, however, pres-

sureda computed by approximation method are greater in magnitude than
pressures computed by the exact method. Conversely, pressures comput-
ed by linearized method are smaller in masgnitde than prestures com-
puted by the exact method, the error increasing with the increase in
the number for o.

5. As has been shown, with the assumptions made above concern-
ing the form of the bodies and the flow velocity, all dimensionless

dynamic elements of motion depend only on the dimensionless parameter
K. Making use of this, let us find now the functional relationshlp
for the coefficients of head-on drag c. and lift force C.,

•inAof i inite. Spa. Let us define the equation of contour
in the form

where R() is the distribution function of the wing thicknesses,
Tehn,. making use of (2.6), we will obtain for the aggregate drag and
lift force

px S dX -$jpH, (P) 8•&p0 (K) (5.2)

Y 5 = bp, - A bp.$(° (5.3)
.a

Expressions for the coefficients of drag and lift force have
the form

CZ S p0 1 (K) 2• (5

-)-PK (KE)(5.4)
Ci, - q PO 01(K) Ar (K) (5.51

(*/)•ab o " 10+



For bodies similar in the sense indicated, Akkeret's linear-
ized theory gives the coefficients of c and e in the form

(V ilbA' " (i/b)U - (5&6)

For large values of the number for M., these expressions

assume the form

(/) Ks (t 1b) K

c m - -- = - (5.7)

wbich arSees with the eqtiatlons (5.4) and (5.5) although these equa-
tions rel considerably more general.

Axial etrical Body. Let the equation of the body be de-
fined in the form

r all M 8h (S 8

where is the maximum diameter of the cross section; h(t)- the
distribution function of thicknesses. Then, we will obtain for the
total drag

X -p2rcrdr =22p, P Lh(e)h'(E) A 2tpc1a 3(KX)

The coefficient of drag related to the area of the maximum
cross section is

The similarity laws obtaineds, show that for bodies with the
same distribution of thicknesses at the angles of attack proportional

to thea reliation /b, amounts c 14 3 and cr 0  (wing of ifnt
span) c Y,02  (axially symmetrical body) will be functions of one

parameter K:Zo 6i/.

Consequently, having experimental results of blowing or of

C S



flight tests for some profile with different numbers for Mo. it is
possible to recompute the obtained results for a series of prctlies
with the same distribution of thicknesses. Conversely, after blowing
upon a series of profiles,, similar in the sense indicated, with the
same number for MNo it is possible to recdmrpute the results for each
of the profiles of the series with different numbers for M.

SFormulas derived in the present article for the magnitudes of
c and cy after taking into account the presence of shock waves

and vortexes in the flow, coincide with Taien's results obtained
with the assumption of potentiality and isentropy of the flow.

Submitted 26 AUgust 1959
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